MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.





  MECÃNICA GRACELI GERAL - QTDRC.





equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   G* =   /  G  /     .  /

 G  = [DR] =            .+  

+  G* =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / G* =  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.






                                           - [   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]


O ESTADO QÂNTICO DE GRACELI


                                           - [   /.    ] [  []

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]















                                           - [   /.    ] [  [ ]

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]


O ESTADO QÂNTICO DE GRACELI


                                           - [   /.    ] [  [][]

G { f [dd]}  ´[d] G*         / .  f [d]   G*                            dd [G]











Em Mecânica clássica mecânica quântica, a Fase geométricafase de Pancharatnam-Berry (em homenagem a S. Pancharatnam e Sir Michael Berry), fase de Pancharatnam ou mais comumente fase Berry, é uma diferença de fase adquirida ao longo de um ciclo, quando o sistema é submetido a um processo adiabático cíclico, que resulta das propriedades geométricas do espaço parâmetro do Hamiltoniano[1] O fenômeno foi descoberto pela primeira vez em 1956, [2] e redescoberto em 1984. [3] Ele pode ser visto no efeito Aharonov-Bohm e intersecção cônica de superfície de energia potencial. No caso de o efeito Aharonov-Bohm, o parâmetro adiabático é o campo magnético envolto por dois caminhos de interferência, e é cíclico no sentido que estes dois caminhos formar um loop. No caso de a intersecção cônica, os parâmetros adiabáticos são as coordenadas moleculares. Além da mecânica quântica, este fenômeno surge em uma variedade de outros sistemas ondulatórios, tais como óptica clássica. Em geral, pode ocorrer sempre que existam, pelo menos, dois parâmetros que caracterizam uma onda na proximidade de algum tipo de singularidade ou buraco na topologia; dois parâmetros são necessários porque ou o conjunto de estados não singulares não será simplesmente conexo, ou terá holonomia não-trivial.

As ondas são caracterizadas por uma amplitude e uma fase, e ambas podem variar como uma função dos parâmetros da Hamiltoniana. A fase geométrica ocorre quando ambos os parâmetros são alterados simultaneamente, mas muito devagar (adiabaticamente), e ao final, são trazidos de volta à configuração inicial . Em mecânica quântica, isso poderia envolver rotações mas também translações das partículas, mas que são desfeitas no final. Seria de esperar que as ondas no sistema voltem ao estado inicial, caracterizado pela amplitude e fase. No entanto, se a mudança no espaço de parâmetros correspondem a um loop não trivial, ou seja, que não pode ser continuamente deformado na identidade, é possível que os estados iniciais e finais difiram por uma fase. Esta diferença é a fase geométrica e sua ocorrência geralmente indica que a dependência dos parâmetros por parte sistema é singular.

Para medir a fase geométrica em um sistema ondulatório, um experimento de interferência é necessário. O pêndulo de Foucault é um exemplo de mecânica clássica que, às vezes, é usado para ilustrar a fase geométrica . Este análogo mecânica da fase geométrica é conhecida como a ângulo de Hannay .

Fase Berry na mecânica quântica

Em um sistema quântico no n-ésimo auto-estado, uma evolução adiabática do Hamiltoniano muda o sistema de tal forma que ele permanece no n-ésimo auto-estado do Hamiltoniano, ao mesmo tempo, obtém um fator de fase. Esta tem uma contribuição da evolução temporal do estado e outro da variação do auto-estado do Hamiltoniano que varia no tempo. O segundo termo corresponde à fase de Berry e, para variações não cíclicas do Hamiltoniano, pode ser ignorada por uma escolha diferente da fase associados com as auto-estados do Hamiltoniano em cada ponto na evolução.

No entanto, se a variação for cíclica, a fase Berry não pode ser cancelada e torna-se uma propriedade observável do sistema. A partir da equação de Schrödinger a fase de Berry  pode ser calculada por: [necessário esclarecer]

onde  parametriza o processo adiabático cíclico. O sistema segue um caminho fechado  no espaço de parâmetros. Uma revisão recente sobre os efeitos de fase geométricas em propriedades eletrônicas foi dada por Xiao, Chang e Niu. [4] A fase geométrica ao longo do caminho fechado  também pode ser calculada integrando a curvatura de Berry sobre a superfície delimitada por .

Comments